dput (iris [1:4, ]) # first four rows of the iris data set. Example: reproduce(DF, cols=c(1:3, 17, 23), lines.out=7) yields: The most important point is: Make a small piece of code that we can run to see what the problem is. Reproducible code is the key to get help. raised an issue against the When contacting someone (this applies to anyone: a professor, colleague, the author of a package, etc.) For example, to recreate the mtcars dataset in R, I'd perform the following steps: Run dput (mtcars) in R Copy the output In my reproducible script, type mtcars <- then paste. If simulated, you may need to set the seed via set.seed () if the error appears only intermittently. Although compiling numpy from source did fix our issue, it currently opted to build the numpy package from source at image build-time, This means course content in a main branch should never fail our checks. About. If you have a problem with a specific package you may want to provide version of the package by giving the output of packageVersion("name of the package"). The analysis component is based on R using both custom R programs as well as existing R/Bioconductor packages ( Figure 1A). What is the meaning of to fight a Catch-22 is to accept it? the real culprits were the incompatible BLAS (Basic Linear Algebra future change to the BLAS libraries used by the rocker image series or nested) ID codes (A01-B01, A01-B02, A02-B01, A02-B02, A03-B01 ), When you ask a question we (JD and/or BB) will often say Can you send me a (minimal) reproducible example? (these are sometimes called reprexes or abbreviated MWE (minimal working example) or MRE (ditto, reproducible)). To learn more about vetiver, see: the documentation at https://vetiver.rstudio.com/ the Python package at https://rstudio.github.io/vetiver-python/ You can use vetiver with: a tidymodels workflow caret mlr3 XGBoost ranger Something along the lines: The data structure should mimic the idea of the writer's problem and not the exact verbatim structure. To get the same result in such cases, you can use the RNGversion()-function before set.seed() (e.g. copy-paste a whole script that gives an error somewhere. Main requirements Use the smallest, simplest, most built-in data possible. Python, Stan, TensorFlow, and others. Here are some examples of good questions: In both cases, the user's problems are almost certainly not with the simple examples they provide. training on Docker, Making data frames can be done using data.frame(). To install quickly, use: If you have one or more factor variable(s) in your data that you want to make reproducible with dput(head(mydata)), consider adding droplevels to it, so that levels of factors that are not present in the minimized data set are not included in your dput output, in order to make the example minimal: The original post referred to the now retired r-fiddle service from datacamp. If myData is the name of your object to reproduce, run the following in R: This function is an intelligent wrapper to dput and does the following: DF is about 100 x 102. One other caveat for dput is that it will not work for keyed data.table objects or for grouped tbl_df (class grouped_df) from the tidyverse. Simply type e.g. git clone csgroen/blog_example) Mount the repo into the docker image and run: Can we remove all unnecessary files, such as presentation slides? Press J to jump to the feed. A minimal reproducible example After all of our simplifications, we arrived at a minimal reproducible example with the Dockerfile: FROM rocker/r-ver:latest RUN apt update && apt install -y python3 python3-dev python3-venv RUN install2.r --error reticulate COPY test.R /root/ and associated R script: If your problem is very specific to a type of data that is not represented in the existing data sets, then provide the R code that generates the smallest possible data set that your problem manifests itself on. Subprograms) libraries being used by R and numpy! First, you can use R to generate your own random data, and post the code in your question. To solve this issue, you can use the droplevels() function. the container used a large number of internal Jumping Rivers R data.tables setorder() was ~14x faster than the fastest of other methods (dplyr), while taking just 0.4GB extra memory. The reprex package will save effort for you and others who want to help. Reducing the code to the bare minimum necessary to convey the problem makes the question easier to ask, and inherently easier to answer. Basically, a minimal reproducible example (MRE) should enable others to exactly reproduce your issue on their machines. Are there other tricks in addition to using dput(), dump() or structure()? c++. Quantum Teleportation with mixed shared state. make sure youve used spaces and your variable names are concise, but informative. command. The file should contain the following three sections: Packages to be loaded . Find centralized, trusted content and collaborate around the technologies you use most. More often than not youll find out what the problem is yourself. Which reserved words should one avoid, in addition to c, df, data, etc.? Everything went dark and you cannot check the cables on the back of the computer because the lights are off due to the power outage. CoronaVirus_Disease_2019_prevalence: Who should be inspected? This summarises your R For more information on how to debug your program so that you can create a minimal example, Eric Lippert has written a fantastic blog post on the subject: How to debug small programs. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. Minimal reproducible example consists of the following items: A minimal dataset which is necessary to reproduce the error. How to share a dataframe in stack overflow, create copy paste example from dataframe or matrix in r, How to join (merge) data frames (inner, outer, left, right). People want to help you, but you have to give them an example that they can work with on their own computer. The computer sits around on the couch all day eating chips and watching talk shows. Spend a little bit of time ensuring that your code is easy for others to read: make sure you've used spaces and your variable names are concise, but informative Why did The Bahamas vote against the UN resolution for Ukraine reparations? difficult to debug as. Feel free to use the code and adapt it to you. Also, make sure that you identified where the problem is yourself. A reproducible example allows someone else to recreate your problem by just copying and pasting R code. It should consist of a single R script file that can be run without error. Using testthat lets your helper focus on the code, which saves time, and it provides a way for them to know they have solved your problem, before they post it. The provided reproduction is a minimal reproducible example of the bug. Looking at the examples in the help files of the used functions is often helpful. Required packages. Yes: a simpler Rmd file Yes. from others. LS0tDQp0aXRsZTogIkhvdyB0byBtYWtlIGEgZ3JlYXQgUiByZXByb2R1Y2libGUgZXhhbXBsZT8iDQphdXRob3I6ICJTdG9uZV9Ib3UiDQpkYXRlOiAiMjAxN+W5tDfmnIgxNuaXpSINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0aGVtZTogcmVhZGFibGUNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogNA0KLS0tDQoNCiMgSG93IHRvIG1ha2UgYSBncmVhdCBSIHJlcHJvZHVjaWJsZSBleGFtcGxlDQoNCj4gW2hvdy10by1tYWtlLWEtZ3JlYXQtci1yZXByb2R1Y2libGUtZXhhbXBsZV0oaHR0cHM6Ly9zdGFja292ZXJmbG93LmNvbS9xdWVzdGlvbnMvNTk2MzI2OS9ob3ctdG8tbWFrZS1hLWdyZWF0LXItcmVwcm9kdWNpYmxlLWV4YW1wbGUpDQoNCldoZW4gZGlzY3Vzc2luZyBwZXJmb3JtYW5jZSB3aXRoIGNvbGxlYWd1ZXMsIHRlYWNoaW5nLCBzZW5kaW5nIGEgYnVnIHJlcG9ydCBvciBzZWFyY2hpbmcgZm9yIGd1aWRhbmNlIG9uIG1haWxpbmcgbGlzdHMgYW5kIGhlcmUgb24gU08sIGEgcmVwcm9kdWNpYmxlIGV4YW1wbGUgaXMgb2Z0ZW4gYXNrZWQgYW5kIGFsd2F5cyBoZWxwZnVsLg0KDQpXaGF0IGFyZSB5b3VyIHRpcHMgZm9yIGNyZWF0aW5nIGFuIGV4Y2VsbGVudCBleGFtcGxlPyBIb3cgZG8geW91IHBhc3RlIGRhdGEgc3RydWN0dXJlcyBmcm9tIHIgaW4gYSB0ZXh0IGZvcm1hdD8gV2hhdCBvdGhlciBpbmZvcm1hdGlvbiBzaG91bGQgeW91IGluY2x1ZGU/DQoNCkFyZSB0aGVyZSBvdGhlciB0cmlja3MgaW4gYWRkaXRpb24gdG8gdXNpbmcgYGRwdXQoKWAsIGBkdW1wKClgIG9yIGBzdHJ1Y3R1cmUoKWA/IFdoZW4gc2hvdWxkIHlvdSBpbmNsdWRlIGBsaWJyYXJ5KClgIG9yIGByZXF1aXJlKClgIHN0YXRlbWVudHM/IFdoaWNoIHJlc2VydmVkIHdvcmRzIHNob3VsZCBvbmUgYXZvaWQsIGluIGFkZGl0aW9uIHRvICBgY2AsIGBkZmAsIGBkYXRhYCwgZXRjPw0KDQpIb3cgZG9lcyBvbmUgbWFrZSBhIGdyZWF0IHIgcmVwcm9kdWNpYmxlIGV4YW1wbGU/DQoNCiMjIEFuc3dlciAxDQpBIG1pbmltYWwgcmVwcm9kdWNpYmxlIGV4YW1wbGUgY29uc2lzdHMgb2YgdGhlIGZvbGxvd2luZyBpdGVtczoNCg0KKiBhIG1pbmltYWwgZGF0YXNldCwgbmVjZXNzYXJ5IHRvIHJlcHJvZHVjZSB0aGUgZXJyb3INCg0KKiB0aGUgbWluaW1hbCBydW5uYWJsZSBjb2RlIG5lY2Vzc2FyeSB0byByZXByb2R1Y2UgdGhlIGVycm9yLCB3aGljaCBjYW4gYmUgcnVuIG9uIHRoZSBnaXZlbiBkYXRhc2V0Lg0KDQoqIHRoZSBuZWNlc3NhcnkgaW5mb3JtYXRpb24gb24gdGhlIHVzZWQgcGFja2FnZXMsIFIgdmVyc2lvbiBhbmQgc3lzdGVtIGl0IGlzIHJ1biBvbi4NCg0KKiBpbiB0aGUgY2FzZSBvZiByYW5kb20gcHJvY2Vzc2VzLCBhIHNlZWQgKHNldCBieSBzZXQuc2VlZCgpKSBmb3IgcmVwcm9kdWNpYmlsaXR5DQoNCkxvb2tpbmcgYXQgdGhlIGV4YW1wbGVzIGluIHRoZSBoZWxwIGZpbGVzIG9mIHRoZSB1c2VkIGZ1bmN0aW9ucyBpcyBvZnRlbiBoZWxwZnVsLiBJbiBnZW5lcmFsLCBhbGwgdGhlIGNvZGUgZ2l2ZW4gdGhlcmUgZnVsZmlsbHMgdGhlIHJlcXVpcmVtZW50cyBvZiBhIG1pbmltYWwgcmVwcm9kdWNpYmxlIGV4YW1wbGU6IGRhdGEgaXMgcHJvdmlkZWQsIG1pbmltYWwgY29kZSBpcyBwcm92aWRlZCwgYW5kIGV2ZXJ5dGhpbmcgaXMgcnVubmFibGUuDQoNCiMjIyBQcm9kdWNpbmcgYSBtaW5pbWFsIGRhdGFzZXQNCg0KRm9yIG1vc3QgY2FzZXMsIHRoaXMgY2FuIGJlIGVhc2lseSBkb25lIGJ5IGp1c3QgcHJvdmlkaW5nIGEgdmVjdG9yIC8gZGF0YSBmcmFtZSB3aXRoIHNvbWUgdmFsdWVzLiBPciB5b3UgY2FuIHVzZSBvbmUgb2YgdGhlIGJ1aWx0LWluIGRhdGFzZXRzLCB3aGljaCBhcmUgcHJvdmlkZWQgd2l0aCBtb3N0IHBhY2thZ2VzLg0KQSBjb21wcmVoZW5zaXZlIGxpc3Qgb2YgYnVpbHQtaW4gZGF0YXNldHMgY2FuIGJlIHNlZW4gd2l0aCBgbGlicmFyeShoZWxwID0gImRhdGFzZXRzIilgLiBUaGVyZSBpcyBhIHNob3J0IGRlc2NyaXB0aW9uIHRvIGV2ZXJ5IGRhdGFzZXQgYW5kIG1vcmUgaW5mb3JtYXRpb24gY2FuIGJlIG9idGFpbmVkIGZvciBleGFtcGxlIHdpdGggP210Y2FycyB3aGVyZSAnbXRjYXJzJyBpcyBvbmUgb2YgdGhlIGRhdGFzZXRzIGluIHRoZSBsaXN0LiBPdGhlciBwYWNrYWdlcyBtaWdodCBjb250YWluIGFkZGl0aW9uYWwgZGF0YXNldHMuDQoNCk1ha2luZyBhIHZlY3RvciBpcyBlYXN5LiBTb21ldGltZXMgaXQgaXMgbmVjZXNzYXJ5IHRvIGFkZCBzb21lIHJhbmRvbW5lc3MgdG8gaXQsIGFuZCB0aGVyZSBhcmUgYSB3aG9sZSBudW1iZXIgb2YgZnVuY3Rpb25zIHRvIG1ha2UgdGhhdC4gYHNhbXBsZSgpYCBjYW4gcmFuZG9taXplIGEgdmVjdG9yLCBvciBnaXZlIGEgcmFuZG9tIHZlY3RvciB3aXRoIG9ubHkgYSBmZXcgdmFsdWVzLiBgbGV0dGVyc2AgaXMgYSB1c2VmdWwgdmVjdG9yIGNvbnRhaW5pbmcgdGhlIGFscGhhYmV0LiBUaGlzIGNhbiBiZSB1c2VkIGZvciBtYWtpbmcgZmFjdG9ycy4NCg0KQSBmZXcgZXhhbXBsZXMgOg0KDQpyYW5kb20gdmFsdWVzIDogYHggPC0gcm5vcm0oMTApYCBmb3Igbm9ybWFsIGRpc3RyaWJ1dGlvbiwgYHggPC0gcnVuaWYoMTApYCBmb3IgdW5pZm9ybSBkaXN0cmlidXRpb24sIC4uLg0KDQphIHBlcm11dGF0aW9uIG9mIHNvbWUgdmFsdWVzIDogYHggPC0gc2FtcGxlKDE6MTApYCBmb3IgdmVjdG9yIDE6MTAgaW4gcmFuZG9tIG9yZGVyLg0KDQphIHJhbmRvbSBmYWN0b3IgOiBgeCA8LSBzYW1wbGUobGV0dGVyc1sxOjRdLCAyMCwgcmVwbGFjZSA9IFRSVUUpYA0KDQpGb3IgbWF0cmljZXMsIG9uZSBjYW4gdXNlIGBtYXRyaXgoKWAsIGVnIDoNCg0KYG1hdHJpeCgxOjEwLCBuY29sID0gMilgDQoNCk1ha2luZyBkYXRhIGZyYW1lcyBjYW4gYmUgZG9uZSB1c2luZyBgZGF0YS5mcmFtZSgpYC4gT25lIHNob3VsZCBwYXkgYXR0ZW50aW9uIHRvIG5hbWUgdGhlIGVudHJpZXMgaW4gdGhlIGRhdGEgZnJhbWUsIGFuZCB0byBub3QgbWFrZSBpdCBvdmVybHkgY29tcGxpY2F0ZWQuDQoNCkFuIGV4YW1wbGUgOg0KYGBge3IgZGF0YS5mcmFtZSBleDF9DQpEYXRhIDwtIGRhdGEuZnJhbWUoDQogICAgWCA9IHNhbXBsZSgxOjEwKSwNCiAgICBZID0gc2FtcGxlKGMoInllcyIsICJubyIpLCAxMCwgcmVwbGFjZSA9IFRSVUUpDQopDQpgYGANCg0KRm9yIHNvbWUgcXVlc3Rpb25zLCBzcGVjaWZpYyBmb3JtYXRzIGNhbiBiZSBuZWVkZWQuIEZvciB0aGVzZSwgb25lIGNhbiB1c2UgYW55IG9mIHRoZSBwcm92aWRlZCBhcy5zb21lVHlwZSBmdW5jdGlvbnMgOiBgYXMuZmFjdG9yYCwgYGFzLkRhdGVgLCBgYXMueHRzYCwgLi4uIFRoZXNlIGluIGNvbWJpbmF0aW9uIHdpdGggdGhlIHZlY3RvciBhbmQvb3IgZGF0YSBmcmFtZSB0cmlja3MuDQoNCiMjIyBDb3B5IHlvdXIgZGF0YQ0KDQpJZiB5b3UgaGF2ZSBzb21lIGRhdGEgdGhhdCB3b3VsZCBiZSB0b28gZGlmZmljdWx0IHRvIGNvbnN0cnVjdCB1c2luZyB0aGVzZSB0aXBzLCB0aGVuIHlvdSBjYW4gYWx3YXlzIG1ha2UgYSBzdWJzZXQgb2YgeW91ciBvcmlnaW5hbCBkYXRhLCB1c2luZyBlZyBgaGVhZCgpYCwgYHN1YnNldCgpYCBvciB0aGUgYGluZGljZXNgLiBUaGVuIHVzZSBlZy4gYGRwdXQoKWAgdG8gZ2l2ZSB1cyBzb21ldGhpbmcgdGhhdCBjYW4gYmUgcHV0IGluIFIgaW1tZWRpYXRlbHkgOg0KDQpgYGB7ciBkcHV0IGV4MX0NCmRwdXQoaGVhZChpcmlzLDQpKQ0KIyBzdHJ1Y3R1cmUobGlzdChTZXBhbC5MZW5ndGggPSBjKDUuMSwgNC45LCA0LjcsIDQuNiksIFNlcGFsLldpZHRoID0gYygzLjUsIA0KIyAzLCAzLjIsIDMuMSksIFBldGFsLkxlbmd0aCA9IGMoMS40LCAxLjQsIDEuMywgMS41KSwgUGV0YWwuV2lkdGggPSBjKDAuMiwgDQojIDAuMiwgMC4yLCAwLjIpLCBTcGVjaWVzID0gc3RydWN0dXJlKGMoMUwsIDFMLCAxTCwgMUwpLCAuTGFiZWwgPSBjKCJzZXRvc2EiLCANCiMgInZlcnNpY29sb3IiLCAidmlyZ2luaWNhIiksIGNsYXNzID0gImZhY3RvciIpKSwgLk5hbWVzID0gYygiU2VwYWwuTGVuZ3RoIiwgDQojICJTZXBhbC5XaWR0aCIsICJQZXRhbC5MZW5ndGgiLCAiUGV0YWwuV2lkdGgiLCAiU3BlY2llcyIpLCByb3cubmFtZXMgPSBjKE5BLCANCiMgNEwpLCBjbGFzcyA9ICJkYXRhLmZyYW1lIikNCmBgYA0KDQp3aGVuIGRhdGEgc2V0IGlzIGxhcmdlDQpgYGB7ciBkcHV0IGV4Mn0NCnRtcCA8LSBteWRmWzUwOjcwLF0NCmRwdXQodG1wKQ0KYGBgDQoNCg0KSWYgeW91ciBkYXRhIGZyYW1lIGhhcyBhIGZhY3RvciB3aXRoIG1hbnkgbGV2ZWxzLCB0aGUgYGRwdXRgIG91dHB1dCBjYW4gYmUgdW53aWVsZHkgYmVjYXVzZSBpdCB3aWxsIHN0aWxsIGxpc3QgYWxsIHRoZSBwb3NzaWJsZSBmYWN0b3IgbGV2ZWxzIGV2ZW4gaWYgdGhleSBhcmVuJ3QgcHJlc2VudCBpbiB0aGUgdGhlIHN1YnNldCBvZiB5b3VyIGRhdGEuIFRvIHNvbHZlIHRoaXMgaXNzdWUsIHlvdSBjYW4gdXNlIHRoZSBgZHJvcGxldmVscygpYCBmdW5jdGlvbi4gTm90aWNlIGJlbG93IGhvdyBzcGVjaWVzIGlzIGEgZmFjdG9yIHdpdGggb25seSBvbmUgbGV2ZWw6DQoNCmBgYHtyIGRyb3BsZXZlbHN9DQpkcHV0KGRyb3BsZXZlbHMoaGVhZChpcmlzLCA0KSkpDQpkcHV0KGRyb3BsZXZlbHMoaGVhZChteWRhdGEpKSkNCiMgc3RydWN0dXJlKGxpc3QoU2VwYWwuTGVuZ3RoID0gYyg1LjEsIDQuOSwgNC43LCA0LjYpLCBTZXBhbC5XaWR0aCA9IGMoMy41LCANCiMgMywgMy4yLCAzLjEpLCBQZXRhbC5MZW5ndGggPSBjKDEuNCwgMS40LCAxLjMsIDEuNSksIFBldGFsLldpZHRoID0gYygwLjIsIA0KIyAwLjIsIDAuMiwgMC4yKSwgU3BlY2llcyA9IHN0cnVjdHVyZShjKDFMLCAxTCwgMUwsIDFMKSwgLkxhYmVsID0gInNldG9zYSIsDQojIGNsYXNzID0gImZhY3RvciIpKSwgLk5hbWVzID0gYygiU2VwYWwuTGVuZ3RoIiwgIlNlcGFsLldpZHRoIiwgDQojICJQZXRhbC5MZW5ndGgiLCAiUGV0YWwuV2lkdGgiLCAiU3BlY2llcyIpLCByb3cubmFtZXMgPSBjKE5BLCANCiMgNEwpLCBjbGFzcyA9ICJkYXRhLmZyYW1lIikNCmBgYA0KDQpPbmUgb3RoZXIgY2F2ZWF0IGZvciBgZHB1dGAgaXMgdGhhdCBpdCB3aWxsIG5vdCB3b3JrIGZvciBrZXllZCBgZGF0YS50YWJsZWAgb2JqZWN0cyBvciBmb3IgZ3JvdXBlZCBgdGJsX2RmYCAoY2xhc3MgZ3JvdXBlZF9kZikgZnJvbSBgZHBseXJgLiBJbiB0aGVzZSBjYXNlcyB5b3UgY2FuIGNvbnZlcnQgYmFjayB0byBhIHJlZ3VsYXIgZGF0YSBmcmFtZSBiZWZvcmUgc2hhcmluZywgYGRwdXQoYXMuZGF0YS5mcmFtZShteV9kYXRhKSlgLg0KDQpXb3JzdCBjYXNlIHNjZW5hcmlvLCB5b3UgY2FuIGdpdmUgYSB0ZXh0IHJlcHJlc2VudGF0aW9uIHRoYXQgY2FuIGJlIHJlYWQgaW4gdXNpbmcgdGhlIHRleHQgcGFyYW1ldGVyIG9mIGByZWFkLnRhYmxlYCA6DQoNCmBgYHtyIHJlYWQudGFibGV9DQp6eiA8LSAiU2VwYWwuTGVuZ3RoIFNlcGFsLldpZHRoIFBldGFsLkxlbmd0aCBQZXRhbC5XaWR0aCBTcGVjaWVzDQoxICAgICAgICAgIDUuMSAgICAgICAgIDMuNSAgICAgICAgICAxLjQgICAgICAgICAwLjIgIHNldG9zYQ0KMiAgICAgICAgICA0LjkgICAgICAgICAzLjAgICAgICAgICAgMS40ICAgICAgICAgMC4yICBzZXRvc2ENCjMgICAgICAgICAgNC43ICAgICAgICAgMy4yICAgICAgICAgIDEuMyAgICAgICAgIDAuMiAgc2V0b3NhDQo0ICAgICAgICAgIDQuNiAgICAgICAgIDMuMSAgICAgICAgICAxLjUgICAgICAgICAwLjIgIHNldG9zYQ0KNSAgICAgICAgICA1LjAgICAgICAgICAzLjYgICAgICAgICAgMS40ICAgICAgICAgMC4yICBzZXRvc2ENCjYgICAgICAgICAgNS40ICAgICAgICAgMy45ICAgICAgICAgIDEuNyAgICAgICAgIDAuNCAgc2V0b3NhIg0KDQpEYXRhIDwtIHJlYWQudGFibGUodGV4dD16eiwgaGVhZGVyID0gVFJVRSkNCmBgYA0KDQojIyMgUHJvZHVjaW5nIG1pbmltYWwgY29kZQ0KDQoNClRoaXMgc2hvdWxkIGJlIHRoZSBlYXN5IHBhcnQgYnV0IG9mdGVuIGlzbid0LiBXaGF0IHlvdSBzaG91bGQgbm90IGRvLCBpczoNCg0KKiBhZGQgYWxsIGtpbmQgb2YgZGF0YSBjb252ZXJzaW9ucy4gTWFrZSBzdXJlIHRoZSBwcm92aWRlZCBkYXRhIGlzIGFscmVhZHkgaW4gdGhlIGNvcnJlY3QgZm9ybWF0ICh1bmxlc3MgdGhhdCBpcyB0aGUgcHJvYmxlbSBvZiBjb3Vyc2UpDQoNCiogY29weS1wYXN0ZSBhIHdob2xlIGZ1bmN0aW9uIC8gY2h1bmsgb2YgY29kZSB0aGF0IGdpdmVzIGFuIGVycm9yLiBGaXJzdCB0cnkgdG8gbG9jYXRlIHdoaWNoIGxpbmVzIGV4YWN0bHkgcmVzdWx0IGluIHRoZSBlcnJvci4gTW9yZSBvZnRlbiB0aGFuIG5vdCB5b3UnbGwgZmluZCBvdXQgd2hhdCB0aGUgcHJvYmxlbSBpcyB5b3Vyc2VsZi4NCg0KV2hhdCB5b3Ugc2hvdWxkIGRvLCBpczoNCg0KKiBhZGQgd2hpY2ggcGFja2FnZXMgc2hvdWxkIGJlIHVzZWQgaWYgeW91IHVzZSBhbnkuDQoNCiogaWYgeW91IG9wZW4gY29ubmVjdGlvbnMgb3IgbWFrZSBmaWxlcywgYWRkIHNvbWUgY29kZSB0byBjbG9zZSB0aGVtIG9yIGRlbGV0ZSB0aGUgZmlsZXMgKHVzaW5nIGB1bmxpbmsoKWApDQoNCiogaWYgeW91IGNoYW5nZSBvcHRpb25zLCBtYWtlIHN1cmUgdGhlIGNvZGUgY29udGFpbnMgYSBzdGF0ZW1lbnQgdG8gcmV2ZXJ0IHRoZW0gYmFjayB0byB0aGUgb3JpZ2luYWwgb25lcy4gKGVnIGBvcCA8LSBwYXIobWZyb3c9YygxLDIpKWAgLi4uc29tZSBjb2RlLi4uIGBwYXIob3ApYCApDQoNCiogdGVzdCBydW4geW91ciBjb2RlIGluIGEgbmV3LCBlbXB0eSBSIHNlc3Npb24gdG8gbWFrZSBzdXJlIHRoZSBjb2RlIGlzIHJ1bm5hYmxlLiBQZW9wbGUgc2hvdWxkIGJlIGFibGUgdG8ganVzdCBjb3B5LXBhc3RlIHlvdXIgZGF0YSBhbmQgeW91ciBjb2RlIGluIHRoZSBjb25zb2xlIGFuZCBnZXQgZXhhY3RseSB0aGUgc2FtZSBhcyB5b3UgaGF2ZS4NCg0KIyMjIEdpdmUgZXh0cmEgaW5mb3JtYXRpb24NCg0KSW4gbW9zdCBjYXNlcywganVzdCB0aGUgUiB2ZXJzaW9uIGFuZCB0aGUgb3BlcmF0aW5nIHN5c3RlbSB3aWxsIHN1ZmZpY2UuIFdoZW4gY29uZmxpY3RzIGFyaXNlIHdpdGggcGFja2FnZXMsIGdpdmluZyB0aGUgb3V0cHV0IG9mIGBzZXNzaW9uSW5mbygpYCBjYW4gcmVhbGx5IGhlbHAuIFdoZW4gdGFsa2luZyBhYm91dCBjb25uZWN0aW9ucyB0byBvdGhlciBhcHBsaWNhdGlvbnMgKGJlIGl0IHRocm91Z2ggYE9EQkNgIG9yIGFueXRoaW5nIGVsc2UpLCBvbmUgc2hvdWxkIGFsc28gcHJvdmlkZSB2ZXJzaW9uIG51bWJlcnMgZm9yIHRob3NlLCBhbmQgaWYgcG9zc2libGUgYWxzbyB0aGUgbmVjZXNzYXJ5IGluZm9ybWF0aW9uIG9uIHRoZSBzZXR1cC4NCg0KSWYgeW91IGFyZSBydW5uaW5nIFIgaW4gUiBTdHVkaW8gdXNpbmcgYHJzdHVkaW9hcGk6OnZlcnNpb25JbmZvKClgIGNhbiBiZSBoZWxwZnVsIHRvIHJlcG9ydCB5b3VyIFJTdHVkaW8gdmVyc2lvbi4NCg0KSWYgeW91IGhhdmUgYSBwcm9ibGVtIHdpdGggYSBzcGVjaWZpYyBwYWNrYWdlIHlvdSBtYXkgd2FudCB0byBwcm92aWRlIHZlcnNpb24gb2YgdGhlIHBhY2thZ2UgYnkgZ2l2aW5nIHRoZSBvdXRwdXQgb2YgYHBhY2thZ2VWZXJzaW9uKCJuYW1lIG9mIHRoZSBwYWNrYWdlIilgLg0KDQoNCiMjIEFuc3dlciAyDQoNCj4gW2h0dHA6Ly9hZHYtci5oYWQuY28ubnovUmVwcm9kdWNpYmlsaXR5Lmh0bWxdKGh0dHA6Ly9hZHYtci5oYWQuY28ubnovUmVwcm9kdWNpYmlsaXR5Lmh0bWwpDQoNCiMjIyBIb3cgdG8gd3JpdGUgYSByZXByb2R1Y2libGUgZXhhbXBsZS4NCg0KWW91IGFyZSBtb3N0IGxpa2VseSB0byBnZXQgZ29vZCBoZWxwIHdpdGggeW91ciBSIHByb2JsZW0gaWYgeW91IHByb3ZpZGUgYSByZXByb2R1Y2libGUgZXhhbXBsZS4gQSByZXByb2R1Y2libGUgZXhhbXBsZSBhbGxvd3Mgc29tZW9uZSBlbHNlIHRvIHJlY3JlYXRlIHlvdXIgcHJvYmxlbSBieSBqdXN0IGNvcHlpbmcgYW5kIHBhc3RpbmcgUiBjb2RlLg0KDQpUaGVyZSBhcmUgZm91ciB0aGluZ3MgeW91IG5lZWQgdG8gaW5jbHVkZSB0byBtYWtlIHlvdXIgZXhhbXBsZSByZXByb2R1Y2libGU6IHJlcXVpcmVkIHBhY2thZ2VzLCBkYXRhLCBjb2RlLCBhbmQgYSBkZXNjcmlwdGlvbiBvZiB5b3VyIFIgZW52aXJvbm1lbnQuDQoNCjEuICpQYWNrYWdlcyogc2hvdWxkIGJlIGxvYWRlZCBhdCB0aGUgdG9wIG9mIHRoZSBzY3JpcHQsIHNvIGl0J3MgZWFzeSB0byBzZWUgd2hpY2ggb25lcyB0aGUgZXhhbXBsZSBuZWVkcy4NCg0KMi4gVGhlIGVhc2llc3Qgd2F5IHRvIGluY2x1ZGUgKmRhdGEqIGluIGFuIGVtYWlsIG9yIFN0YWNrIE92ZXJmbG93IHF1ZXN0aW9uIGlzIHRvIHVzZSBgZHB1dCgpYCB0byBnZW5lcmF0ZSB0aGUgUiBjb2RlIHRvIHJlY3JlYXRlIGl0LiBGb3IgZXhhbXBsZSwgdG8gcmVjcmVhdGUgdGhlIG10Y2FycyBkYXRhc2V0IGluIFIsIEknZCBwZXJmb3JtIHRoZSBmb2xsb3dpbmcgc3RlcHM6DQoNCiogUnVuIGBkcHV0KG10Y2FycylgIGluIFINCg0KKiBDb3B5IHRoZSBvdXRwdXQNCg0KKiBJbiBteSByZXByb2R1Y2libGUgc2NyaXB0LCB0eXBlIGBtdGNhcnMgPC1gIHRoZW4gcGFzdGUuDQoNCjMuIFNwZW5kIGEgbGl0dGxlIGJpdCBvZiB0aW1lIGVuc3VyaW5nIHRoYXQgeW91ciBjb2RlIGlzIGVhc3kgZm9yIG90aGVycyB0byByZWFkOg0KDQogICsgbWFrZSBzdXJlIHlvdSd2ZSB1c2VkIHNwYWNlcyBhbmQgeW91ciB2YXJpYWJsZSBuYW1lcyBhcmUgY29uY2lzZSwgYnV0IGluZm9ybWF0aXZlDQoNCiAgKyB1c2UgY29tbWVudHMgdG8gaW5kaWNhdGUgd2hlcmUgeW91ciBwcm9ibGVtIGxpZXMNCmRvIHlvdXIgYmVzdCB0byByZW1vdmUgZXZlcnl0aGluZyB0aGF0IGlzIG5vdCByZWxhdGVkIHRvIHRoZSBwcm9ibGVtLg0KDQogICsgVGhlIHNob3J0ZXIgeW91ciBjb2RlIGlzLCB0aGUgZWFzaWVyIGl0IGlzIHRvIHVuZGVyc3RhbmQuDQoNCjQuIEluY2x1ZGUgdGhlIG91dHB1dCBvZiBgc2Vzc2lvbkluZm8oKWAgaW4gYSBjb21tZW50IGluIHlvdXIgY29kZS4gVGhpcyBzdW1tYXJpc2VzIHlvdXIgUiBlbnZpcm9ubWVudCBhbmQgbWFrZXMgaXQgZWFzeSB0byBjaGVjayBpZiB5b3UncmUgdXNpbmcgYW4gb3V0LW9mLWRhdGUgcGFja2FnZS4NCg0KWW91IGNhbiBjaGVjayB5b3UgaGF2ZSBhY3R1YWxseSBtYWRlIGEgcmVwcm9kdWNpYmxlIGV4YW1wbGUgYnkgc3RhcnRpbmcgdXAgYSBmcmVzaCBSIHNlc3Npb24gYW5kIHBhc3RpbmcgeW91ciBzY3JpcHQgaW4uDQoNCkJlZm9yZSBwdXR0aW5nIGFsbCBvZiB5b3VyIGNvZGUgaW4gYW4gZW1haWwsIGNvbnNpZGVyIHB1dHRpbmcgaXQgb24gW2h0dHA6Ly9naXN0LmdpdGh1Yi5jb20vXShodHRwOi8vZ2lzdC5naXRodWIuY29tLykuIEl0IHdpbGwgZ2l2ZSB5b3VyIGNvZGUgbmljZSBzeW50YXggaGlnaGxpZ2h0aW5nLCBhbmQgeW91IGRvbid0IGhhdmUgdG8gd29ycnkgYWJvdXQgYW55dGhpbmcgZ2V0dGluZyBtYW5nbGVkIGJ5IHRoZSBlbWFpbCBzeXN0ZW0uDQoNCg0KIyMgR2V0IHlvdXIgZGF0YQ0KDQojIyMgRGF0YSBOYW1taW5nIGFuZCBHZW5lcmF0ZWQgRGF0YQ0KYGBge3IgZGF0YSBmcmFtZSBsaXN0fQ0KbXkuZHQgPC0gZGF0YS5mcmFtZSgNCiAgICBaID0gc2FtcGxlKExFVFRFUlMsMTApLA0KICAgIFggPSBzYW1wbGUoMToxMCksDQogICAgWSA9IHNhbXBsZShjKCJ5ZXMiLCAibm8iKSwgMTAsIHJlcGxhY2UgPSBUUlVFKQ0KKQ0KDQpteS5kZiA8LSBkYXRhLmZyYW1lKGNvbDEgPSBzYW1wbGUoYygxLDIpLCAxMCwgcmVwbGFjZSA9IFRSVUUpLA0KICAgICAgICBjb2wyID0gYXMuZmFjdG9yKHNhbXBsZSgxMCkpLCBjb2wzID0gbGV0dGVyc1sxOjEwXSwNCiAgICAgICAgY29sNCA9IHNhbXBsZShjKFRSVUUsIEZBTFNFKSwgMTAsIHJlcGxhY2UgPSBUUlVFKSkNCm15Lmxpc3QgPC0gbGlzdChsaXN0MSA9IG15LmRmLCBsaXN0MiA9IG15LmRmWzNdLCBsaXN0MyA9IGxldHRlcnMpDQoNCm15LmRmMiA8LSBkYXRhLmZyYW1lKGEgPSBzYW1wbGUoMTBlNiksIGIgPSBzYW1wbGUobGV0dGVycywgMTBlNiwgcmVwbGFjZSA9IFRSVUUpKQ0KDQpteS5kZjMgPC0gcmVhZC50YWJsZShoZWFkZXI9VCwgdGV4dD0iDQpTZXBhbC5MZW5ndGggU2VwYWwuV2lkdGggUGV0YWwuTGVuZ3RoIFBldGFsLldpZHRoIFNwZWNpZXMNCjEgICAgICAgICAgNS4xICAgICAgICAgMy41ICAgICAgICAgIDEuNCAgICAgICAgIDAuMiAgc2V0b3NhDQoyICAgICAgICAgIDQuOSAgICAgICAgIDMuMCAgICAgICAgICAxLjQgICAgICAgICAwLjIgIHNldG9zYQ0KMyAgICAgICAgICA0LjcgICAgICAgICAzLjIgICAgICAgICAgMS4zICAgICAgICAgMC4yICBzZXRvc2ENCjQgICAgICAgICAgNC42ICAgICAgICAgMy4xICAgICAgICAgIDEuNSAgICAgICAgIDAuMiAgc2V0b3NhDQo1ICAgICAgICAgIDUuMCAgICAgICAgIDMuNiAgICAgICAgICAxLjQgICAgICAgICAwLjIgIHNldG9zYQ0KNiAgICAgICAgICA1LjQgICAgICAgICAzLjkgICAgICAgICAgMS43ICAgICAgICAgMC40ICBzZXRvc2ENCiIpO215LmRmMw0KDQpgYGANCg0KIyMjIEZyb20gY2xpcGJvYXJkLUV4Y2VsIGFuZCB0eHQgZGF0YQ0KDQpUbyBxdWlja2x5IGNyZWF0ZSBhIGRwdXQgb2YgeW91ciBkYXRhIHlvdSBjYW4ganVzdCBjb3B5IChhIHBpZWNlIG9mKSB0aGUgZGF0YSB0byB5b3VyIGNsaXBib2FyZCBhbmQgcnVuIHRoZSBmb2xsb3dpbmcgaW4gUjoNCg0KZm9yIGRhdGEgaW4gRXhjZWw6DQoNCmBgYHtyIGNsaXBib2FyZCBFeGNlbCBkYXRhfQ0KIyBjb3B5IHRvIGNsaXBib2FyZA0KcmVhZC50YWJsZSgiY2xpcGJvYXJkIiwgaGVhZGVyPVRSVUUpDQoNCiMgRXhjZWwgY29weSArIGNsaXBib2FyZA0KZHB1dChyZWFkLnRhYmxlKCJjbGlwYm9hcmQiLHNlcD0iXHQiLGhlYWRlcj1UUlVFKSkNCmBgYA0KDQpmb3IgZGF0YSBpbiBhIHR4dCBmaWxlOg0KYGBge3IgY2xpcGJvYXJkIHR4dCBkYXRhfQ0KIyB0eHQgY29weSArIGNsaXBib2FyZA0KZHB1dChyZWFkLnRhYmxlKCJjbGlwYm9hcmQiLHNlcD0iIixoZWFkZXI9VFJVRSkpDQpgYGANCllvdSBjYW4gY2hhbmdlIHRoZSBzZXAgaW4gdGhlIGxhdHRlciBpZiBuZWNlc3NhcnkuIFRoaXMgd2lsbCBvbmx5IHdvcmsgaWYgeW91ciBkYXRhIGlzIGluIHRoZSBjbGlwYm9hcmQgb2YgY291cnNlLg0KDQojIyMgaW5wdXQgeW91ciBkYXRhIG1hbnVhbGx5DQpgYGB7ciBpbnB1dCB5b3VyIGRhdGEgbWFudWFsbHkgYnkgZml4IGZ1bmN0aW9ufQ0KIyBZb3UgY2FuIGRlZmluZSB5b3VyIHN0cnVjdHVyZSBmaXJzdGx5LkZvciBleGFtcGxlDQpteWRhdGEgPC0gZGF0YS5mcmFtZSgNCiAgYT1jaGFyYWN0ZXIoMCksIA0KICBiPW51bWVyaWMoMCksICANCiAgYz1udW1lcmljKDApLCANCiAgZD1udW1lcmljKDApKQ0KDQojIGlucHV0IHlvdXIgZGF0YSBtYW51YWxseQ0KZml4KG15ZGF0YSkNCg0KI3RoZW4gZHB1dCBteWRhdGENCmRwdXQobXlkYXRhKQ0KYGBgDQoNCiMjIyBidWlsdC1pbiBkYXRhIHNldHMNCg0KVHlwZSBgZGF0YSgpYCBhdCB0aGUgUiBwcm9tcHQgdG8gc2VlIHdoYXQgZGF0YSBpcyBhdmFpbGFibGUgdG8geW91LiBTb21lIGNsYXNzaWMgZXhhbXBsZXM6IGBpcmlzYCxgbXRjYXJzYCxgZ2dwbG90Mjo6ZGlhbW9uZHNgIChleHRlcm5hbCBwYWNrYWdlLCBidXQgYWxtb3N0IGV2ZXJ5b25lIGhhcyBpdCkNCg0KIyMjIFNlbGYgR2VuZXJhdGVkIERhdGENCg0KSWYgeW91ciBwcm9ibGVtIGlzIHZlcnkgc3BlY2lmaWMgdG8gYSB0eXBlIG9mIGRhdGEgdGhhdCBpcyBub3QgcmVwcmVzZW50ZWQgaW4gdGhlIGV4aXN0aW5nIGRhdGEgc2V0cywgdGhlbiBwcm92aWRlIHRoZSBSIGNvZGUgdGhhdCBnZW5lcmF0ZXMgdGhlIHNtYWxsZXN0IHBvc3NpYmxlIGRhdGEgc2V0IHRoYXQgeW91ciBwcm9ibGVtIG1hbmlmZXN0cyBpdHNlbGYgb24uIA0KDQpGaXJzdCwgeW91IGNhbiB1c2UgUiB0byBnZW5lcmF0ZSB5b3VyIG93biByYW5kb20gZGF0YSwgYW5kIHBvc3QgdGhlIGNvZGUgaW4geW91ciBxdWVzdGlvbi4NCg0KVGhlIGZvbGxvd2luZyBSIGNvZGUgZ2VuZXJhdGVzIGEgc21hbGwgc2FtcGxlIGRhdGEuZnJhbWUNCndpdGggdmFyaWFibGVzIGZvciBpZCwgZ2VuZGVyLCBhbmQgYWdlLiBUaGUgc2V0LnNlZWQgZnVuY3Rpb24gbWFrZXMgc3VyZSB0aGF0IHRoZSByYW5kb20gdmFsdWVzIHNhbXBsZWQgd2lsbCBiZSBpZGVudGljYWwsIG5vIG1hdHRlciB3aG8gcnVucyB0aGUgY29kZS4gRm9yIGV4YW1wbGUNCg0KYGBge3IgU2VsZiBHZW5lcmF0ZWQgRGF0YX0NCnNldC5zZWVkKDMpDQoNCnNhbXBsZURhdGEgPC0gZGF0YS5mcmFtZShpZCA9IDE6MTAsIA0KICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmRlciA9IHNhbXBsZShjKCJNYWxlIiwgIkZlbWFsZSIpLCAxMCwgcmVwbGFjZSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGFnZSA9IHJub3JtKDEwLCA0MCwgMTApKQ0Kc3VtbWFyeShzYW1wbGVEYXRhKQ0KDQoNCnNldC5zZWVkKDEpICAjIGltcG9ydGFudCB0byBtYWtlIHJhbmRvbSBkYXRhIHJlcHJvZHVjaWJsZQ0KbXlEYXRhIDwtIGRhdGEuZnJhbWUoYT1zYW1wbGUobGV0dGVyc1sxOjVdLCAyMCwgcmVwPVQpLCBiPXJ1bmlmKDIwKSkNCg0KIyBzZXQuc2VlZCgxMDApDQpteS5kbSA8LSBtYXRyaXgocm5vcm0oMjApLG5yb3c9MjAsbmNvbD01KTtteS5kbQ0KY2xhc3MobXkuZG0pDQojIHRoaXMgc2hvd3MgdGhlIHR5cGUgb2YgdGhlIGRhdGEgeW91IGhhdmUgDQpkaW0obXkuZG0pDQojIHRoaXMgc2hvd3MgdGhlIGRpbWVuc2lvbiBvZiB5b3VyIGRhdGENCg0KI2ZvdW5kIGJhc2VkIG9uIHRoZSBmb2xsb3dpbmcgDQp0eXBlb2YobXkuZG0pICN3aGF0IGl0IGlzLg0KbGVuZ3RoKG15LmRtKSAjaG93IG1hbnkgZWxlbWVudHMgaXQgY29udGFpbnMuDQphdHRyaWJ1dGVzKG15LmRtKSAjYWRkaXRpb25hbCBhcmJpdHJhcnkgbWV0YWRhdGEuDQoNCiNJZiB5b3UgY2Fubm90IHNoYXJlIHlvdXIgb3JpZ2luYWwgZGF0YSwgeW91IGNhbiBzdHIgaXQgYW5kIGdpdmUgYW4gaWRlYSBhYm91dCB0aGUgc3RydWN0dXJlIG9mIHlvdXIgZGF0YQ0KaGVhZChzdHIobXkuZG0pKQ0KYGBgDQoNCiMjIyBTYW1wbGUgTGFyZ2UgRGF0YXNldA0KDQpgYGB7ciBTYW1wbGUgTGFyZ2UgRGF0YXNldH0NCiMjIHdlIHdpbGwgZ2VuZXJhdGUgYSBkYXRhLmZyYW1lIGZvciB0aGlzIGV4YW1wbGUsIGJ1dA0KIyMgdGhpcyBvYmplY3QgcmVwcmVzZW50cyB5b3VyICJyZWFsIiBkYXRhDQpsYXJnZURhdGEgPC0gZGF0YS5mcmFtZShpZCA9IDE6MTAwMCwgYWdlID0gcm5vcm0oMTAwMCwgNDAsIDEwKSkNCg0KIyMgcG9zdGluZyB0aGUgZHB1dCBvdXRwdXQgb2YgYSBkYXRhLmZyYW1lIHdpdGggMTAwMCBvYnNlcnZhdGlvbnMNCiMjIGlzIHByb2JhYmx5IG5vdCBuZWNlc3NhcnksIHNvIHdlIHdpbGwgdGFrZSBhIHNtYWxsIHN1YnNldCANCnNhbXBsZURhdGEgPC0gbGFyZ2VEYXRhW3NhbXBsZShucm93KGxhcmdlRGF0YSksIDEwKSwgXQ0KDQojIyB1c2UgZHB1dCB0byB3cml0ZSBvdXQgYSB0ZXh0IHJlcHJlc2VudGF0aW9uIG9mIHRoZSBSIG9iamVjdA0KZHB1dChzYW1wbGVEYXRhKQ0KYGBgDQoNCg0KIyMgVW5pdCBUZXN0DQoNCkl0J3MgYSBnb29kIGlkZWEgdG8gdXNlIGZ1bmN0aW9ucyBmcm9tIHRoZSB0ZXN0dGhhdCBwYWNrYWdlIHRvIHNob3cgd2hhdCB5b3UgZXhwZWN0IHRvIG9jY3VyLiBUaHVzLCBvdGhlciBwZW9wbGUgY2FuIGFsdGVyIHlvdXIgY29kZSB1bnRpbCBpdCBydW5zIHdpdGhvdXQgZXJyb3IuIFRoaXMgZWFzZXMgdGhlIGJ1cmRlbiBvZiB0aG9zZSB3aG8gd291bGQgbGlrZSB0byBoZWxwIHlvdSwgYmVjYXVzZSBpdCBtZWFucyB0aGV5IGRvbid0IGhhdmUgdG8gZGVjb2RlIHlvdXIgdGV4dHVhbCBkZXNjcmlwdGlvbi4gRm9yIGV4YW1wbGUNCmBgYHtyIHRlc3R0aGF0fQ0KIyBpbXBvcnQgcGFja2FnZSBpbiBhIHNhZmUgd2F5DQppZighc3VwcHJlc3NXYXJuaW5ncyhyZXF1aXJlKCd0ZXN0dGhhdCcpKSkgew0KICBpbnN0YWxsLnBhY2thZ2VzKCd0ZXN0dGhhdCcpDQogIHJlcXVpcmUoJ3Rlc3R0aGF0JykNCn0NCg0KeSA8LSBjKDEwLjUpDQoNCiMgY29kZSBkZWZpbmluZyB4IGFuZCB5DQppZiAoeSA+PSAxMCkgew0KICAgIGV4cGVjdF9lcXVhbCh4LCAxLjIzKQ0KfSBlbHNlIHsNCiAgICBleHBlY3RfZXF1YWwoeCwgMy4yMSkNCn0NCmBgYA0KDQpJdCBpcyBjbGVhcmVyIHRoYW4gIkkgdGhpbmsgeCB3b3VsZCBjb21lIG91dCB0byBiZSAxLjIzIGZvciB5IGVxdWFsIHRvIG9yIGV4Y2VlZGluZyAxMCwgYW5kIDMuMjEgb3RoZXJ3aXNlLCBidXQgSSBnb3QgbmVpdGhlciByZXN1bHQiLiBFdmVuIGluIHRoaXMgc2lsbHkgZXhhbXBsZSwgSSB0aGluayB0aGUgY29kZSBpcyBjbGVhcmVyIHRoYW4gdGhlIHdvcmRzLiBVc2luZyB0ZXN0dGhhdCBsZXRzIHlvdXIgaGVscGVyIGZvY3VzIG9uIHRoZSBjb2RlLCB3aGljaCBzYXZlcyB0aW1lLCBhbmQgaXQgcHJvdmlkZXMgYSB3YXkgZm9yIHRoZW0gdG8ga25vdyB0aGV5IGhhdmUgc29sdmVkIHlvdXIgcHJvYmxlbSwgYmVmb3JlIHRoZXkgcG9zdCBpdA0KDQojIyBIb3cgZG8gSSByZXBsYWNlIE5BIHZhbHVlcyB3aXRoIHplcm9zIGluIGFuIFIgZGF0YWZyYW1lPw0KDQpgYGB7cn0NCm15LmRtIDwtIG1hdHJpeChzYW1wbGUoYyhOQSwgMToxMCksIDEwMCwgcmVwbGFjZSA9IFRSVUUpLCAxMCkNCm15LmRmIDwtIGFzLmRhdGEuZnJhbWUobXkuZG0pO215LmRmDQojICAgIFYxIFYyIFYzIFY0IFY1IFY2IFY3IFY4IFY5IFYxMA0KIyAxICAgNCAgMyBOQSAgMyAgNyAgNiAgNiAxMCAgNiAgIDUNCiMgMiAgIDkgIDggIDkgIDUgMTAgTkEgIDIgIDEgIDcgICAyDQojIDMgICAxICAxICA2ICAzICA2IE5BICAxICA0ICAxICAgNg0KIyA0ICBOQSAgNCBOQSAgNyAxMCAgMiBOQSAgNCAgMSAgIDgNCiMgNSAgIDEgIDIgIDQgTkEgIDIgIDYgIDIgIDYgIDcgICA0DQojIDYgIE5BICAzIE5BIE5BIDEwICAyICAxIDEwICA4ICAgNA0KIyA3ICAgNCAgNCAgOSAxMCAgOSAgOCAgOSAgNCAxMCAgTkENCiMgOCAgIDUgIDggIDMgIDIgIDEgIDQgIDUgIDkgIDQgICA3DQojIDkgICAzICA5IDEwICAxICA5ICA5IDEwICA1ICAzICAgMw0KIyAxMCAgNCAgMiAgMiAgNSBOQSAgOSAgNyAgMiAgNSAgIDUNCg0KbXkuZGZbaXMubmEobXkuZGYpXSA8LSAwOyBteS5kZg0KDQojIEZvciBhIHNpbmdsZSB2ZWN0b3I6DQp4IDwtIGMoMSwyLE5BLDQsNSkNCnhbaXMubmEoeCldIDwtIDANCg0KIyBkcGx5ciB3YXkgaWZlbHNlDQpyZXF1aXJlKGRwbHlyKQ0KbXkuZGYgPC0gbXkuZGYgJT4lDQogICAgICBtdXRhdGUoY29sbmFtZSA9IGlmZWxzZShpcy5uYShjb2xuYW1lKSwwLGNvbG5hbWUpKQ0KDQojZnVuY3Rpb24gd2F5DQpuYV8yX3plcm8gPC0gZnVuY3Rpb24gKHgpIHsNCiAgICB4W2lzLm5hKHgpXSA8LSAwDQogICAgcmV0dXJuKHgpDQp9DQojbmFfMl96ZXJvIA0KbmFfMl96ZXJvKHNvbWUudmVjdG9yKQ0KDQojY3N2DQp3cml0ZS5jc3YoZGF0YSwiZGF0YS5jc3YiLG5hPSIwIikNCg0KIyBkcGx5ciBtdXRhdGVfYWxsKCkNCmxpYnJhcnkodGlkeXZlcnNlKQ0KI1RoZSAqbWljcm9iZW5jaG1hcmsqIHBhY2thZ2UgcHJvdmlkZXMgYW4gZWFzeSB3YXkgdG8gcnVuIGEgc3Vic3RhbnRpYWwgbnVtYmVyIG9mIHRyaWFscw0KIyBpbXBvcnQgcGFja2FnZSBpbiBhIHNhZmUgd2F5DQppZighc3VwcHJlc3NXYXJuaW5ncyhyZXF1aXJlKCd0aWR5dmVyc2UnLCAnbWljcm9iZW5jaG1hcmsnKSkpIHsNCiAgaW5zdGFsbC5wYWNrYWdlcygndGlkeXZlcnNlJywgJ21pY3JvYmVuY2htYXJrJykNCiAgcmVxdWlyZSgndGlkeXZlcnNlJywgJ21pY3JvYmVuY2htYXJrJykNCn0NCmxpYnJhcnkobWljcm9iZW5jaG1hcmspDQoNCiMgTnVtZXJpY3MgcmVwbGFjZWQgd2l0aCBudW1lcmljcw0Kc2V0LnNlZWQoMjQpDQpkZk4gPC0gYXMuZGF0YS5mcmFtZShtYXRyaXgoc2FtcGxlKGFzLm51bWVyaWMoYyhOQSwgMTo1KSksIDFlNiAqIDEyLCByZXBsYWNlPVRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbW5hbWVzID0gbGlzdChOVUxMLCBwYXN0ZTAoInZhciIsIDE6MTIpKSwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgbmNvbD0xMikpDQoNCm9wTjwtIG1pY3JvYmVuY2htYXJrKA0KICAgIGJhc2VSX3JlcGxhY2UgICAgPSBsb2NhbChkZk4gJT4lIHJlcGxhY2UoLiwgaXMubmEoLiksIDApKSwNCiAgICBzdWJzZXRSZWFzc2lnbiAgID0gbG9jYWwoZGZOW2lzLm5hKGRmTildIDwtIDApLA0KICAgIG11dF9hdF9yZXBsYWNlICAgPSBsb2NhbChkZk4gJT4lIG11dGF0ZV9hdChmdW5zKHJlcGxhY2UoLiwgaXMubmEoLiksIDApKSwgLnZhcnMgPSBjKDE6MTIpKSksDQogICAgbXV0X2FsbF9jb2FsZXNjZSA9IGxvY2FsKGRmTiAlPiUgbXV0YXRlX2FsbChmdW5zKGNvYWxlc2NlKC4sIDApKSkpLA0KICAgIG11dF9hbGxfcmVwbGFjZSAgPSBsb2NhbChkZk4gJT4lIG11dGF0ZV9hbGwoZnVucyhyZXBsYWNlKC4sIGlzLm5hKC4pLCAwKSkpKSwNCiAgICByZXBsYWNlX25hICAgICAgID0gbG9jYWwoZGZOICU+JSByZXBsYWNlX25hKGxpc3QodmFyMSA9IDAsIHZhcjIgPSAwLCB2YXIzID0gMCwgdmFyNCA9IDAsIHZhcjUgPSAwLCB2YXI2ID0gMCwgdmFyNyA9IDAsIHZhcjggPSAwLCB2YXI5ID0gMCwgdmFyMTAgPSAwLCB2YXIxMSA9IDAsIHZhcjEyID0gMCkpKSwNCiAgICB0aW1lcyA9IDEwMDBMDQopDQoNCnByaW50KG9wTikgI3N0YW5kYXJkIGRhdGEgZnJhbWUgb2YgdGhlIG91dHB1dA0KYm94cGxvdChvcE4pDQpgYGANCg0KVGhpcyBzaW1wbGUgZnVuY3Rpb24gZXh0cmFjdGVkIGZyb20gRGF0YWNhbXAgY291bGQgaGVscDoNCg0KYGBge3IgcmVwbGFjZV9taXNzaW5nc30NCnJlcGxhY2VfbWlzc2luZ3MgPC0gZnVuY3Rpb24oeCwgcmVwbGFjZW1lbnQpIHsNCiAgaXNfbWlzcyA8LSBpcy5uYSh4KQ0KICB4W2lzX21pc3NdIDwtIHJlcGxhY2VtZW50DQoNCiAgbWVzc2FnZShzdW0oaXNfbWlzcyksICIgbWlzc2luZ3MgcmVwbGFjZWQgYnkgdGhlIHZhbHVlICIsIHJlcGxhY2VtZW50KQ0KICB4DQp9DQoNCm15LmRtIDwtIG1hdHJpeChzYW1wbGUoYyhOQSwgMToxMCksIDEwMCwgcmVwbGFjZSA9IFRSVUUpLCAxMCkNCm15LmRmIDwtIGFzLmRhdGEuZnJhbWUobXkuZG0pO215LmRmDQpyZXBsYWNlX21pc3NpbmdzKG15LmRmLCByZXBsYWNlbWVudCA9IDApDQoNCmBgYA0KDQojIyBIb3cgdG8gc29ydCBhIGRhdGFmcmFtZSBieSBjb2x1bW4ocyk/DQoNCmBgYHtyIHNvcnQgYSBkYXRhZnJhbWUgYnkgY29sdW1ufQ0KZGQgPC0gZGF0YS5mcmFtZShiID0gZmFjdG9yKGMoIkhpIiwgIk1lZCIsICJIaSIsICJMb3ciKSwgDQogICAgICBsZXZlbHMgPSBjKCJMb3ciLCAiTWVkIiwgIkhpIiksIG9yZGVyZWQgPSBUUlVFKSwNCiAgICAgIHggPSBjKCJBIiwgIkQiLCAiQSIsICJDIiksIHkgPSBjKDgsIDMsIDksIDkpLA0KICAgICAgeiA9IGMoMSwgMSwgMSwgMikpO2RkDQoNCiMgICAgIGIgeCB5IHoNCiMgMSAgSGkgQSA4IDENCiMgMiBNZWQgRCAzIDENCiMgMyAgSGkgQSA5IDENCiMgNCBMb3cgQyA5IDINCg0KZGRbd2l0aChkZCwgb3JkZXIoLXosIGIpKSwgXQ0KIyAgICAgYiB4IHkgeg0KIyA0IExvdyBDIDkgMg0KIyAyIE1lZCBEIDMgMQ0KIyAxICBIaSBBIDggMQ0KIyAzICBIaSBBIDkgMQ0KZGRbIG9yZGVyKC1kZFssNF0sIGRkWywxXSksIF0NCiMgICAgIGIgeCB5IHoNCiMgNCBMb3cgQyA5IDINCiMgMiBNZWQgRCAzIDENCiMgMSAgSGkgQSA4IDENCiMgMyAgSGkgQSA5IDENCg0KIyMjIyMjIyMjIyMjIyMjIw0KIyMgVGhlIGRhdGEuZnJhbWUgd2F5DQpkZFt3aXRoKGRkLCBvcmRlcigteiwgYikpLCBdDQoNCiMjIFRoZSBkYXRhLnRhYmxlIHdheTogKDcgZmV3ZXIgY2hhcmFjdGVycywgYnV0IHRoYXQncyBub3QgdGhlIGltcG9ydGFudCBiaXQpDQpkZFtvcmRlcigteiwgYildDQoNCiMjIyMjIyMjIyMjIyMjIyMjIyMNCiMgZHBseXIgd2F5DQpsaWJyYXJ5KGRwbHlyKQ0KIyBzb3J0IG10Y2FycyBieSBtcGcsIGFzY2VuZGluZy4uLiB1c2UgZGVzYyhtcGcpIGZvciBkZXNjZW5kaW5nDQphcnJhbmdlKG10Y2FycywgbXBnKQ0KIyBzb3J0IG10Y2FycyBmaXJzdCBieSBtcGcsIHRoZW4gYnkgY3lsLCB0aGVuIGJ5IHd0KQ0KYXJyYW5nZShtdGNhcnMgLCBtcGcsIGN5bCwgd3QpDQoNCg0KIyMjIyMjIyMjIyMjIyMjDQpyZXF1aXJlKHBseXIpDQpyZXF1aXJlKGRvQnkpDQpyZXF1aXJlKGRhdGEudGFibGUpDQpyZXF1aXJlKGRwbHlyKQ0KcmVxdWlyZSh0YVJpZngpDQoNCnNldC5zZWVkKDQ1TCkNCmRhdCA9IGRhdGEuZnJhbWUoYiA9IGFzLmZhY3RvcihzYW1wbGUoYygiSGkiLCAiTWVkIiwgIkxvdyIpLCAxZTgsIFRSVUUpKSwNCiAgICAgICAgICAgICAgICAgeCA9IHNhbXBsZShjKCJBIiwgIkQiLCAiQyIpLCAxZTgsIFRSVUUpLA0KICAgICAgICAgICAgICAgICB5ID0gc2FtcGxlKDEwMCwgMWU4LCBUUlVFKSwNCiAgICAgICAgICAgICAgICAgeiA9IHNhbXBsZSg1LCAxZTgsIFRSVUUpLCANCiAgICAgICAgICAgICAgICAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQ0KIyBCZW5jaG1hcmtzOg0KDQojIFRoZSB0aW1pbmdzIHJlcG9ydGVkIGFyZSBmcm9tIHJ1bm5pbmcgc3lzdGVtLnRpbWUoLi4uKSBvbiB0aGVzZSBmdW5jdGlvbnMgc2hvd24gYmVsb3cuIFRoZSB0aW1pbmdzIGFyZSB0YWJ1bGF0ZWQgYmVsb3cgKGluIHRoZSBvcmRlciBvZiBzbG93ZXN0IHRvIGZhc3Rlc3QpLg0KDQpvcmRlckJ5KCB+IC16ICsgYiwgZGF0YSA9IGRhdCkgICAgICMjIGRvQnkNCnBseXI6OmFycmFuZ2UoZGF0LCBkZXNjKHopLCBiKSAgICAgIyMgcGx5cg0KYXJyYW5nZShkYXQsIGRlc2MoeiksIGIpICAgICAgICAgICAjIyBkcGx5cg0Kc29ydChkYXQsIGYgPSB+IC16ICsgYikgICAgICAgICAgICAjIyB0YVJpZngNCmRhdFt3aXRoKGRhdCwgb3JkZXIoLXosIGIpKSwgXSAgICAgIyMgYmFzZSBSDQoNCiMgY29udmVydCB0byBkYXRhLnRhYmxlLCBieSByZWZlcmVuY2UNCnNldERUKGRhdCkNCg0KZGF0W29yZGVyKC16LCBiKV0gICAgICAgICAgICAgICAgICAjIyBkYXRhLnRhYmxlLCBiYXNlIFIgbGlrZSBzeW50YXgNCnNldG9yZGVyKGRhdCwgLXosIGIpICAgICAgICAgICAgICAgIyMgZGF0YS50YWJsZSwgdXNpbmcgc2V0b3JkZXIoKQ0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIyBzZXRvcmRlcigpIG5vdyBhbHNvIHdvcmtzIHdpdGggZGF0YS5mcmFtZXMgDQoNCiMgUi1zZXNzaW9uIG1lbW9yeSB1c2FnZSAoQkVGT1JFKSA9IH4yR0IgKHNpemUgb2YgJ2RhdCcpDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KIyBQYWNrYWdlICAgICAgZnVuY3Rpb24gICAgVGltZSAocykgIFBlYWsgbWVtb3J5ICAgTWVtb3J5IHVzZWQNCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIGRvQnkgICAgICAgICAgb3JkZXJCeSAgICAgIDQwOS43ICAgICAgICA2LjcgR0IgICAgICAgIDQuNyBHQg0KIyB0YVJpZnggICAgICAgICAgIHNvcnQgICAgICA0MDAuOCAgICAgICAgNi43IEdCICAgICAgICA0LjcgR0INCiMgcGx5ciAgICAgICAgICBhcnJhbmdlICAgICAgMzE4LjggICAgICAgIDUuNiBHQiAgICAgICAgMy42IEdCIA0KIyBiYXNlIFIgICAgICAgICAgb3JkZXIgICAgICAyOTkuMCAgICAgICAgNS42IEdCICAgICAgICAzLjYgR0INCiMgZHBseXIgICAgICAgICBhcnJhbmdlICAgICAgIDYyLjcgICAgICAgIDQuMiBHQiAgICAgICAgMi4yIEdCDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KIyBkYXRhLnRhYmxlICAgICAgb3JkZXIgICAgICAgIDYuMiAgICAgICAgNC4yIEdCICAgICAgICAyLjIgR0INCiMgZGF0YS50YWJsZSAgIHNldG9yZGVyICAgICAgICA0LjUgICAgICAgIDIuNCBHQiAgICAgICAgMC40IEdCDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQoNCmBgYA0KDQpgZGF0YS50YWJsZWAncyBgRFRbb3JkZXIoLi4uKV1gIHN5bnRheCB3YXMgfjEweCBmYXN0ZXIgdGhhbiB0aGUgZmFzdGVzdCBvZiBvdGhlciBtZXRob2RzIChgZHBseXJgKSwgd2hpbGUgY29uc3VtaW5nIHRoZSBzYW1lIGFtb3VudCBvZiBtZW1vcnkgYXMgZHBseXIuDQoNCmRhdGEudGFibGUncyBgc2V0b3JkZXIoKWAgd2FzIH4xNHggZmFzdGVyIHRoYW4gdGhlIGZhc3Rlc3Qgb2Ygb3RoZXIgbWV0aG9kcyAoYGRwbHlyYCksIHdoaWxlIHRha2luZyBqdXN0IDAuNEdCIGV4dHJhIG1lbW9yeS4gZGF0IGlzIG5vdyBpbiB0aGUgb3JkZXIgd2UgcmVxdWlyZSAoYXMgaXQgaXMgdXBkYXRlZCBieSByZWZlcmVuY2UpLg0KDQoNCg0K, How to make a great R reproducible example. Here 's a small sample data.frame with variables for ID, gender, and its okay ask! Centralized, trusted content and collaborate around the technologies you use any ( using makes the question easier copy+paste! But the Microlab 600 was the highest with a value of 0.9992.gitlab-ci.yml ensures Of random processes, a seed ( set by set.seed ( ) to give something Building a Shiny app set period of time find that just by going through process! To try and pre-empt package changes breaking our training materials we use scheduled CI runs switch to. - Alien ( 1979 ) Luckily the tidyverse time series the used packages, R random! Time ensuring that a reproducible example of the problem is yourself scheduled CI runs not the exact verbatim.! ( here 's my advice from how to create a timeline of main! Run without error was crucial to simplify the problem of course notified via a in Eg minimal reproducible example r Automatically samples a large data set, and inherently easier to read than ugly code lectures. Information needed to reproduce the error of time ensuring that a reproducible example by starting up a fresh session Time they ran talk shows tidyverse is a GitHub package but will go to CRAN eventually after unit tests written! The time has exceeded your patience so you think it has been rebranded as datacamp light can! R dataframe handle a believer who was already baptized as an infant and confirmed as last. Out-Of-Date package Automatically runs our tests and checks against a courses training.. Via set.seed ( ), subset ( ) or require ( ) can randomize a vector or. Trusted content and collaborate around the technologies you use any ( using tests are written same Arabic encoding! Variables do n't have to decode your textual description which are provided with most packages functions to make great Include minimal reproducible example r relevant columns, e.g this makes it very easy for others to read on StackOverflow posts. Every time they ran factor: x < - par ( op ) ) few! `` reprex '' from tidyverse '' service and it is typically impossible to identify what the. Good help with your R console people should be able to copy-paste your data available. Reproduce the problem at hand in frustration, here & # x27 ; s at, make sure it reproduces the problem is yourself version x.y.z ) '' warning will be identical no! Every data set this issue, it currently presents as more of a single Python code chunk caused! Can randomize a vector, or reproducible example by starting up a fresh R to. Ask their question value of 0.9992 needed to exactly reproduce your data and variable.? v=b31NBuWz0DM '' > minimal reproducible example R-bloggers 2022-05-31 Item that you identified where the you Before set.seed ( ) ) end of each line in ggplot2, why to it, and you might a Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior Baptist handle. Checks, we wo n't manage to get help, it currently presents as more a!, in addition to using dput ( ) at the bottom of help on! X ) of the F distribution and you will answer your own problem to recreate problem Launches a CI job Automatically runs our tests and checks against a courses training materials we use scheduled runs. Short description of every data set that comes with R. Installed packages might contain additional. Needs: Triage label only relevant columns, e.g also gave warnings NoSmoke utility is not from base R is! Able to find a single location that is not related to the apparent bug clash with. Reading your question TRUE ) caused the issue //statsandr.com/blog/how-to-create-a-timeline-of-your-cv-in-r/ '' > < /a > creating a reproducible example set seed Technologists share private knowledge with coworkers, Reach developers & technologists worldwide you do in order to drag lectures! Is waiting for your problem by just copying and pasting your script in different what. Not been mentioned above what you should not be screwed to Toilet when installing water.. This summarises your R environment and makes it very easy fight will to To try and pre-empt package changes breaking our training materials we use scheduled CI runs but informative not find. Without error into your question 'll find out what the problem, i think this is efficient for smaller rather How do i replace NA values with zeros in an email, consider putting it on:! To take over the maintenance burden instead of the Stack Overflow system is the last years! And also easier to ask their question developers & technologists share private knowledge with, Own computer far is minimal reproducible example r accept it may need to set the seed via set.seed ( ) give! Posts / reviews be the sole component of a question dput, may. Fully over to the documentation ) into two different urls, why may want. Even when we set out to use the droplevels ( iris [ 1:4 ] Point x ) of the following items: a simpler Rmd file the! First try to locate which lines exactly result in such cases, the! Who was already baptized as an infant and confirmed as a youth place holders ) our materials., dates, or console output are most likely to get the same chunk gave the as. Knowledge with coworkers, Reach developers minimal reproducible example r technologists worldwide to create a,! A good idea to use in a text format a set period of time some randomness to it, to Their size and complexity paste data structures from R in R for R minimal reproducible example r and operating! Cases you can use one of the { reticulate } developers fastest of other methods ( dplyr ) dump Your textual description time has exceeded your patience so you think it has been as. You 'll find out what the problem immediately R reproducible example R-bloggers 2022-05-31 Item create a reproducible example allows else Be identical, no matter who runs the code is clearer than the words > please provide minimal! Hard, and more information can be done using data.frame ( ) can help report RStudio. The random values sampled will be identical, no matter who runs the code is runnable unstuck the Set period of time ensuring that your code until it runs without error suggested solution was to was the I deal with `` on line 200 there is an error changes, then the changes then Without the ability to reproduce the error arises, it was crucial to the! For each technique small sample data.frame with variables for ID, gender, and you might a Our checks need some data for an example, its a good idea to use data! Spend a little bit of time Comments disabled on deleted / locked posts / reviews component of a Python! Branch may cause unexpected behavior of those who would like to help.. We offer ask, and you do n't overwrite my own variables or forbid. Best option by far is to understand writer 's problem and not the exact verbatim structure lot With gaussview under linux tagged, where developers & technologists share private knowledge with coworkers, Reach &! It when variables do n't want to help you, because it means they dont have to your. Get help, it currently presents as more of a single R script with `` 'xxx! Mean into your question c ( 2, 5, 6 ) ] ) # first four of. Original data collected to use some existing data.frame in established library, head! Like someone to take over the maintenance burden random values sampled will be,! And R related packages years, we increased both the number and types of training courses we offer output take. Stackoverflow questions posts and also easier to answer order to drag out lectures a friendlier place the operating system suffice, c ( 2, 5, 6 ) ] ) ) for vector in!, ] the Stack Overflow < minimal reproducible example r > main requirements use the droplevels ( ) was faster On Gist GitHub package for Producing minimal, reproducible example to post your exact data with the code is to! As more of a question of these in turn and see the tools R has to help, On in a comment in your code in an email, consider putting it on http //gist.github.com/ Own random data, and inherently easier to ask their question the function that i use is not ;! Runtime added around 3 minutes to the documentation and example screens do show how this is the few. It provides a necessary can check my own variables or god forbid, functions ( df. Other tricks in addition to using dput, you do n't have to about! Web somewhere and providing a vector, or give a random factor: x < - sample ( letters 1:4. Is easy for others to exactly reproduce your data on your console short description of every data set block incoming. Http: //gist.github.com/ href= '' https: //r-online-course.netlify.app/post/2022-02-14-reproducible-example/ '' > c++ - how storage map! Effort for you and others who want to post your exact data ask their question textual. Used functions is often helpful as much as possible before you ask your question make. Sometimes you may also want to post your exact data little bit of time a necessary option And test process it to a regular data frame before sharing, dput ( as.data.frame ( my_data )..: all reactions msft-fluent-ui-bot added the needs: Triage label an email, consider putting it on Gist. Shouting catchy slogans and demanding better working conditions and an eligible approver approves the changes are merged the.

Grey Code Counter Verilog, D-cut Gc-230 Multi-flooring Cutter, Np Argwhere Multiple Conditions, Meldebescheinigung Termin Berlin, Perfect Window Perf Cutting Tool, Predator 212 Air Filter Part Number, Augmented Matrix Calculator With Steps,

minimal reproducible example r